Russian Journal of Organic Chemistry, Vol. 39, No. 7, 2003, pp. 992–994. Translated from Zhurnal Organicheskoi Khimii, Vol. 39, No. 7, 2003, pp. 1054–1056. Original Russian Text Copyright © 2003 by Kukharev, Stankevich, Klimenko, Lobanova.

Reaction of *w***-Vinyloxyalkylamines with Isatin**

B. F. Kukharev, V. K. Stankevich, G. R. Klimenko, and N. A. Lobanova

Favorskii Irkutsk Institute of Chemistry, Siberian Division, Russian Academy of Sciences, ul. Favorskogo 1, Irkutsk, 664033 Russia e-mail: admin@irioch.irk.ru

Received January 5, 2003

Abstract—3-(ω -Vinyloxyalkylimino)-2,3-dihydroindol-2-ones and 3-(vinyloxyphenylimino)-2,3-dihydroindol-2-ones were synthesized in 34–93% yield by reactions of ω -aminoalkyl and aminophenyl vinyl ethers with isatin.

Isatin and its derivatives exhibit versatile biological activity and are widely used in the synthesis of various compounds for technical applications [1]. The present study was aimed at obtaining isatin derivatives having a reactive vinyloxy group. A combination of the latter with the isatin skeleton was expected to give rise to compounds which may be promising as monomers and intermediate products in organic synthesis [2]. The condensation of isatin (I) with vinyl ethers IIa–IIg derived from amino alcohols was carried out in methanol at an isatin-to-amine molar ratio of 1:1.1 (Scheme 1).

Scheme 1.

II, **III**, $X = (CH_2)_2$ (**a**), $(CH_2)_3$ (**b**), $(CH_2)_4$ (**c**), CH₂CHMe (**d**), CH₂CH(OH)CH₂OCH₂CH₂(**e**), 1,2-C₆H₄ (**f**), 1,4-C₆H₄ (**g**).

Vinyl ethers **IIa–IIc**, **IIf**, and **IIf** derived, respectively, from 2-aminoethanol, 3-amino-1-propanol, 4-amino-1-butanol, *o*-aminophenol, and *p*-aminophenol readily reacted with isatin (**I**) on mixing the reactants at room temperature. As a result, the corresponding 3-imino-2,3-dihydroindol-2-ones **IIIa–IIIc**, **IIIf**, and **IIIg** were obtained in 50–94% yield. 2-Aminopropyl vinyl ether (**IId**) and 1-amino-3-[2-(vinyloxy)ethoxy]propan-2-ol (**IIe**) showed a considerably weaker reactivity. In these cases, the reaction mixture was heated for 3.5–4 h under reflux to obtain condensation products **IIId** and **IIIe** in 34–40% yield. No condensation occurred in the reaction of isatin (**I**) with vinyl ethers derived from 2-amino-2-methyl-1-propanol and 2-amino-1-butanol even on prolonged heating of the reactant mixture in the presence of 2 equiv of the amine. Presumably, this is explained by steric shielding of the amino group in the vinyl ether.

Compounds **IIIa–IIIg** were isolated as colored finely crystalline substances. Their color changed from bright yellow (**IIIa–IIIc**) to orange (**IIIf, IIIg**) and red–brown (**IIId** and **IIIe**). The products are readily soluble in DMF and DMSO, sparingly soluble in ethanol, and insoluble in water, benzene, and chloroform. Their yields, melting points, and elemental analyses are given in Table 1, and Tables 2 and 3 contain, respectively, the IR and ¹H NMR spectra of **IIIa–IIIg**.

In the ¹H NMR spectra of all compounds **IIIa–IIIg** we observed a doublet of doublets at δ 6.38–6.57 ppm which belongs to the vinyl proton nearest to the oxygen atom. In addition, compounds **IIIf** and **IIIg** showed in the spectra doublets of doublets at 4.47–4.73 and 4.36–4.49 ppm from *trans* and *cis* protons of the H₂C=C fragment. The corresponding protons in the spectra of **IIIa–IIIe** appear as doublets of doublets at δ 4.17–4.27 and 3.98–4.02 ppm. However, these signals are completely or partially overlapped by those of the substituent at the imino nitrogen atom. The coupling constants for the vinyl protons are as

Comp. no.	Yield, %	mp, °C	Found, %			Formula	Calculated, %		
			С	Н	N	Formula	С	Н	N
IIIa	67	162–164	67.09	5.75	12.40	C ₁₂ H ₁₂ N ₂ O ₂	66.65	5.59	12.96
IIIb	59	112-114	67.82	6.09	11.98	$C_{13}H_{14}N_2O_2$	67.81	6.13	12.17
IIIc	56	106-108	68.84	6.78	11.51	$C_{14}H_{16}N_2O_2$	68.83	6.60	11.47
IIId	40	127-128	67.51	6.45	11.85	$C_{13}H_{14}N_2O_2$	67.81	6.13	12.17
IIIe	34	129–130	62.29	6.09	9.37	$C_{15}H_{18}N_2O_4$	62.06	6.25	9.65
IIIf	50	141–143	72.56	4.69	10.43	$C_{16}H_{12}N_2O_2$	72.72	4.58	10.60
IIIg	94	220–222	72.47	4.73	10.66	$C_{16}H_{12}N_2O_2$	72.72	4.58	10.60

Table 1. Yields, melting points, and elemental analyses of 3-(ω-vinyloxyalkylamino)-2,3-dihydroindol-2-ones and 3-(vinyloxyphenylamino)-2,3-dihydroindol-2-ones **IIIa**–**IIIg**

Table 2. IR spectra of compounds IIIa-IIIg

Comp. no.	v, cm ⁻¹
IIIa	490, 575, 605, 640, 660, 700, 725, 740, 760, 800, 815, 820, 870, 915, 975, 990, 1015, 1030, 1060, 1105, 1155, 1195, 1205, 1260, 1285, 1320, 1335, 1350, 1380, 1395, 1465, 1585, 1605, 1645, 1700, 1720, 1730, 1885, 1925, 1965, 2320–2370, 2880, 2905, 2930, 3200–3250
IIIb	490, 510, 580, 600, 650, 740, 765, 780, 800, 820, 860, 870, 890, 915, 930, 960, 990, 1025, 1085, 1100, 1150, 1205, 1255, 1285, 1320, 1335, 1385, 1465, 1520, 1610, 1655, 1710, 1740, 1785, 1900, 1945, 2320–2375, 2870 2955, 3050, 3070–3085, 3140, 3190, 3420–3450
IIIc	465, 485, 515, 585, 600, 645, 660, 730, 740, 790, 825, 860, 875, 920, 930, 960, 980, 990, 1020, 1030, 1075, 1095, 1100, 1150, 1180, 1205, 1260, 1285, 1335, 1380, 1400, 1470, 1620, 1655, 1715, 1740, 1900, 1940, 2355, 2615, 2660–2690, 2795, 2870, 2880, 2940, 2960, 2985, 3075, 3110, 3155, 3390
IIId	480, 640, 665, 740, 810, 970, 1010, 1090, 1185, 1320, 1370, 1465, 1475, 1615, 1640, 1650, 1715, 1730, 2920, 2970, 3380-3440
IIIe	490, 520, 560, 595, 640, 670, 750, 820, 875, 940, 970, 1020, 1040, 1090, 1120, 1170, 1195, 1245, 1320, 1395, 1465, 1480, 1505, 1575, 1615, 1635, 1700, 1715, 2320-2360, 2865, 2910-2930, 3260, 3350-3410
IIIf	480, 500, 530, 530, 570, 590, 630, 650, 670, 700, 720, 735, 740, 755, 790, 840, 875, 935, 950, 955, 980, 1040, 1085, 1100, 1140, 1190, 1210, 1240, 1260, 1285, 1305, 1330, 1380, 1440, 1455, 1475, 1515, 1530, 1550, 1570, 1585, 1600, 1610, 1635, 1695, 1725, 1915, 1940, 2315-2350, 2975, 3015, 3045, 3105, 3200, 3220–3255
IIIg	485, 520, 545, 565, 625, 655, 690, 720, 730, 740, 785, 825, 840, 880, 945, 960, 985, 1000, 1085, 1100, 1135, 1155, 1185, 1200, 1240, 1275, 1285, 1300, 1325, 1375, 1405, 1450, 1485, 1585, 1600, 1630, 1710, 1725, 1730, 2315-2360, 3050, 3075, 3100, 3160, 3220-3255, 3420-3440

follows: ${}^{2}J = 1.6-2.2$, ${}^{3}J_{cis} = 6.3-6.9$, ${}^{3}J_{trans} = 13.1-14.3$ Hz.

The ¹H NMR spectra of compounds **IIIf** and **IIIg** contain a complex multiplet in the region δ 6.7–7.7 ppm, which corresponds to protons of the dihydro-indole fragment and aromatic protons. Compounds **IIIa–IIIe** show in the same region of the spectrum

a simpler pattern: a doublet at $\delta \sim 7.7$ ppm, a triplet at $\delta \sim 7.4$ ppm, and a two-proton multiplet at $\delta \sim 7.1$ ppm.

For compound **IIIa** we also recorded two-dimensional NOESY spectrum (400 MHz). On the basis of this spectrum we assigned the doublet at δ 7.75 ppm to 4-H, triplets at δ 7.43 and 7.05 ppm to 6-H and 5-H, respectively, and doublet at δ 6.91 ppm to 7-H.

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 39 No. 7 2003

Comp. no.	Chemical shifts δ , ppm (<i>J</i> , Hz)						
IIIa	4.00 d.d (1H, <i>cis</i> -HC=CO), 4.15 m (4H, NCH ₂ CH ₂ O), 4.24 d.d (1H, <i>trans</i> -HC=CO), 6.56 d.d (1H, OCH=C), 6.95–7.03 m (2H, 7-H, 5-H), 7.43 t (1H, 6-H), 7.74 d (1H, 4-H), 10.78 br.s (1H, NH)						
IIIa ^a	4.02 d.d (1H, <i>cis</i> -HC=CO, ${}^{2}J = 1.79$, ${}^{3}J_{cis} = 6.85$), 4.12 t (2H, NCH ₂ , ${}^{3}J = 5.15$), 4.18 t (2H, OCH ₂), 4.27 d.d (1H, <i>trans</i> -HC=CO, ${}^{3}J_{trans} = 14.32$), 6.57 d.d (1H, OCH=C), 6.91 d (1H, 7-H, ${}^{3}J = 7.74$), 7.05 t (1H, 5-H, ${}^{3}J = 7.63$), 7.43 t (1H, 6-H, ${}^{3}J = 7.70$), 7.75 d (1H, 4-H, ${}^{3}J = 7.64$), 10.82 s (1H, NH)						
IIIb	2.09 m (2H, CH ₂ CH ₂ CH ₂), 3.81–4.08 m (5H, <i>cis</i> -HC=CO, NCH ₂ , OCH ₂), 4.26 d.d (1H, <i>trans</i> -HC=CO), 6.52 d.d (1H, OCH=C), 6.88–7.02 m (2H, 7-H, 5-H), 7.43 t (1H, 6-H), 7.73 d (1H, 4-H), 10.80 s (1H, NH)						
IIIc	1.82 m (4H, CH ₂ CH ₂ CH ₂ CH ₂), 3.74–4.25 m (6H, NCH ₂ , OCH ₂ , OC=CH ₂), 6.50 d.d (1H, OCH=C), 6.94– 7.01 m (2H, 7-H, 5-H), 7.42 t (1H, 6-H), 7.73 d (1H, 4-H), 10.75 s (1H, NH)						
IIId	1.15 m (3H, CH ₃), 3.76–4.25 m (5H, NCH ₂ CHO, OC=CH ₂), 6.45 d.d (1H, OCH=C), 6.92–7.02 m (2H, 7-H, 5-H), 7.41 t (1H, 6-H), 7.75 d (1H, 4-H), 10.29 s (1H, NH)						
IIIe	3.98–4.26 m (12H, NCH ₂ , OCH ₂ CH ₂ O, CHCH ₂ O, OH, OC=CH ₂), 6.39 d.d (1H, OCH=C), 6.95–7.07 m (2H, 7-H, 5-H), 7.31 t (1H, 6-H), 7.77 d (1H, 4-H), 10.75 s (1H, NH)						
IIIf	4.36 d.d (1H, <i>cis</i> -HC=CO), 4.47 d.d (1H, <i>trans</i> -HC=CO), 6.38 d.d (1H, OCH=C), 6.75–7.67 m (8H, NC ₆ H ₄ O, C ₆ H ₄), 11.01 s (1H, NH)						
IIIg	4.49 d.d (1H, <i>cis</i> -HC=CO), 4.73 d.d (1H, <i>trans</i> -HC=CO), 6.57 d.d (1H, OCH=C), 6.70–7.61 m (8H, NC ₆ H ₄ O, C ₆ H ₄), 10.94 s (1H, NH)						

Table 3. ¹H NMR spectra of compounds IIIa–IIIg

^a The spectrum was recorded on a Bruker DPX-400 instrument at 400.13 MHz.

The ¹H NMR spectra of compounds **IIIa–IIIe** indicate that they exist as a single stereoisomer. By analogy with published data [3], we believe that this isomer has *E* configuration. No *Z* isomer was detected by ¹H NMR spectroscopy.

EXPERIMENTAL

The ¹H NMR spectra were recorded at 30°C on a Jeol FX-90Q spectrometer (90 MHz) using DMSO- d_6 as solvent and HMDS as internal reference. The ¹H NMR spectrum of **IIIa** was also obtained on a Bruker DPX-400 instrument (400.13 MHz) in DMSO- d_6 with HMDS as internal reference. The IR spectra were measured on a Specord 75IR spectrophotometer from samples pelleted with KBr.

3-(ω-**Vinyloxyalkylimino**)-**2,3-dihydroindo**l-**2ones IIIa–IIIe and 3-(vinyloxyphenylimino**)-**2,3-dihydroindo**l-**2-ones IIIf and IIIg.** A solution of 0.11 mol of vinyloxyalkylamine **IIa–IIc, IIf**, or **IIg** in 50 ml of ethanol was added with stirring at a temperature not exceeding 20°C to a suspension of 14.71 g (0.1 mol) of isatin (I) in 100 ml of ethanol. The mixture spontaneously warmed up to 30–40°C and was stirred for 2–4 h. It was then left to stand for 16 h at room temperature, and crystals of **IIIa– IIIc**, **IIIf**, or **IIIg** were filtered off and recrystallized from ethanol.

In the reaction of isatin (I) with amines IId and IIe, a mixture of 14.71 g (0.1 mol) of isatin, 0.11 mol of amine IId or IIe, and 150 ml of ethanol was heated under reflux for 4 h. The mixture was cooled and poured into 200 ml of cold water. The product was filtered off and recrystallized from ethanol.

REFERENCES

- 1. Zhungietu, G.I. and Rekhter, M.A., *Izatin i ego proizvodnye* (Isatin and Its Derivatives), Kishinev: Shtiintsa, 1977.
- Trofimov, B.A., *Geteroatomnye proizvodnye atsetilena* (Heteroatom Acetylene Derivatives), Moscow: Nauka, 1981, p. 319; Kukharev, B.F., Stankevich, V.K., and Klimenko, G.R., *Usp. Khim.*, 1995, vol. 64, p. 562.
- Hine, J. and Chuen Yuan Yeh, J. Am. Chem. Soc., 1967, vol. 89, p. 2669; Parry, K.A.W., Robinson, P.J., Sainsbury, P.J., and Waller, M.J., J. Chem. Soc. B, 1970, p. 700.